Copied to
clipboard

G = C523Q16order 400 = 24·52

2nd semidirect product of C52 and Q16 acting via Q16/C4=C22

metabelian, supersoluble, monomial

Aliases: C523Q16, C52Dic20, C20.15D10, C10.15D20, Dic10.1D5, C4.4D52, C52C8.1D5, C51(C5⋊Q16), (C5×C10).12D4, C10.4(C5⋊D4), (C5×C20).7C22, C2.7(C5⋊D20), C524Q8.2C2, (C5×Dic10).2C2, (C5×C52C8).2C2, SmallGroup(400,70)

Series: Derived Chief Lower central Upper central

C1C5×C20 — C523Q16
C1C5C52C5×C10C5×C20C5×Dic10 — C523Q16
C52C5×C10C5×C20 — C523Q16
C1C2C4

Generators and relations for C523Q16
 G = < a,b,c,d | a5=b5=c8=1, d2=c4, ab=ba, cac-1=a-1, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >

2C5
2C5
10C4
50C4
2C10
2C10
5C8
5Q8
25Q8
2C20
2C20
2Dic5
10Dic5
10Dic5
10Dic5
10Dic5
10Dic5
10Dic5
10C20
25Q16
5C40
5Dic10
5Dic10
5C5×Q8
10Dic10
10Dic10
2C526C4
2C5×Dic5
5Dic20
5C5⋊Q16

Smallest permutation representation of C523Q16
On 80 points
Generators in S80
(1 58 53 69 46)(2 47 70 54 59)(3 60 55 71 48)(4 41 72 56 61)(5 62 49 65 42)(6 43 66 50 63)(7 64 51 67 44)(8 45 68 52 57)(9 25 73 24 40)(10 33 17 74 26)(11 27 75 18 34)(12 35 19 76 28)(13 29 77 20 36)(14 37 21 78 30)(15 31 79 22 38)(16 39 23 80 32)
(1 53 46 58 69)(2 54 47 59 70)(3 55 48 60 71)(4 56 41 61 72)(5 49 42 62 65)(6 50 43 63 66)(7 51 44 64 67)(8 52 45 57 68)(9 73 40 25 24)(10 74 33 26 17)(11 75 34 27 18)(12 76 35 28 19)(13 77 36 29 20)(14 78 37 30 21)(15 79 38 31 22)(16 80 39 32 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 23 5 19)(2 22 6 18)(3 21 7 17)(4 20 8 24)(9 72 13 68)(10 71 14 67)(11 70 15 66)(12 69 16 65)(25 56 29 52)(26 55 30 51)(27 54 31 50)(28 53 32 49)(33 48 37 44)(34 47 38 43)(35 46 39 42)(36 45 40 41)(57 73 61 77)(58 80 62 76)(59 79 63 75)(60 78 64 74)

G:=sub<Sym(80)| (1,58,53,69,46)(2,47,70,54,59)(3,60,55,71,48)(4,41,72,56,61)(5,62,49,65,42)(6,43,66,50,63)(7,64,51,67,44)(8,45,68,52,57)(9,25,73,24,40)(10,33,17,74,26)(11,27,75,18,34)(12,35,19,76,28)(13,29,77,20,36)(14,37,21,78,30)(15,31,79,22,38)(16,39,23,80,32), (1,53,46,58,69)(2,54,47,59,70)(3,55,48,60,71)(4,56,41,61,72)(5,49,42,62,65)(6,50,43,63,66)(7,51,44,64,67)(8,52,45,57,68)(9,73,40,25,24)(10,74,33,26,17)(11,75,34,27,18)(12,76,35,28,19)(13,77,36,29,20)(14,78,37,30,21)(15,79,38,31,22)(16,80,39,32,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,72,13,68)(10,71,14,67)(11,70,15,66)(12,69,16,65)(25,56,29,52)(26,55,30,51)(27,54,31,50)(28,53,32,49)(33,48,37,44)(34,47,38,43)(35,46,39,42)(36,45,40,41)(57,73,61,77)(58,80,62,76)(59,79,63,75)(60,78,64,74)>;

G:=Group( (1,58,53,69,46)(2,47,70,54,59)(3,60,55,71,48)(4,41,72,56,61)(5,62,49,65,42)(6,43,66,50,63)(7,64,51,67,44)(8,45,68,52,57)(9,25,73,24,40)(10,33,17,74,26)(11,27,75,18,34)(12,35,19,76,28)(13,29,77,20,36)(14,37,21,78,30)(15,31,79,22,38)(16,39,23,80,32), (1,53,46,58,69)(2,54,47,59,70)(3,55,48,60,71)(4,56,41,61,72)(5,49,42,62,65)(6,50,43,63,66)(7,51,44,64,67)(8,52,45,57,68)(9,73,40,25,24)(10,74,33,26,17)(11,75,34,27,18)(12,76,35,28,19)(13,77,36,29,20)(14,78,37,30,21)(15,79,38,31,22)(16,80,39,32,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,72,13,68)(10,71,14,67)(11,70,15,66)(12,69,16,65)(25,56,29,52)(26,55,30,51)(27,54,31,50)(28,53,32,49)(33,48,37,44)(34,47,38,43)(35,46,39,42)(36,45,40,41)(57,73,61,77)(58,80,62,76)(59,79,63,75)(60,78,64,74) );

G=PermutationGroup([[(1,58,53,69,46),(2,47,70,54,59),(3,60,55,71,48),(4,41,72,56,61),(5,62,49,65,42),(6,43,66,50,63),(7,64,51,67,44),(8,45,68,52,57),(9,25,73,24,40),(10,33,17,74,26),(11,27,75,18,34),(12,35,19,76,28),(13,29,77,20,36),(14,37,21,78,30),(15,31,79,22,38),(16,39,23,80,32)], [(1,53,46,58,69),(2,54,47,59,70),(3,55,48,60,71),(4,56,41,61,72),(5,49,42,62,65),(6,50,43,63,66),(7,51,44,64,67),(8,52,45,57,68),(9,73,40,25,24),(10,74,33,26,17),(11,75,34,27,18),(12,76,35,28,19),(13,77,36,29,20),(14,78,37,30,21),(15,79,38,31,22),(16,80,39,32,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,23,5,19),(2,22,6,18),(3,21,7,17),(4,20,8,24),(9,72,13,68),(10,71,14,67),(11,70,15,66),(12,69,16,65),(25,56,29,52),(26,55,30,51),(27,54,31,50),(28,53,32,49),(33,48,37,44),(34,47,38,43),(35,46,39,42),(36,45,40,41),(57,73,61,77),(58,80,62,76),(59,79,63,75),(60,78,64,74)]])

49 conjugacy classes

class 1  2 4A4B4C5A5B5C5D5E5F5G5H8A8B10A10B10C10D10E10F10G10H20A20B20C20D20E···20N20O20P20Q20R40A···40H
order12444555555558810101010101010102020202020···202020202040···40
size112201002222444410102222444422224···42020202010···10

49 irreducible representations

dim1111222222224444
type+++++++-++--++-
imageC1C2C2C2D4D5D5Q16D10D20C5⋊D4Dic20C5⋊Q16D52C5⋊D20C523Q16
kernelC523Q16C5×C52C8C5×Dic10C524Q8C5×C10C52C8Dic10C52C20C10C10C5C5C4C2C1
# reps1111122244482448

Matrix representation of C523Q16 in GL6(𝔽41)

100000
010000
001000
000100
0000040
0000134
,
100000
010000
00403500
0063500
000010
000001
,
13340000
2240000
0022800
00133900
00001318
00002728
,
2520000
15160000
00252500
00391600
00002440
0000117

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,34],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,6,0,0,0,0,35,35,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[13,22,0,0,0,0,34,4,0,0,0,0,0,0,2,13,0,0,0,0,28,39,0,0,0,0,0,0,13,27,0,0,0,0,18,28],[25,15,0,0,0,0,2,16,0,0,0,0,0,0,25,39,0,0,0,0,25,16,0,0,0,0,0,0,24,1,0,0,0,0,40,17] >;

C523Q16 in GAP, Magma, Sage, TeX

C_5^2\rtimes_3Q_{16}
% in TeX

G:=Group("C5^2:3Q16");
// GroupNames label

G:=SmallGroup(400,70);
// by ID

G=gap.SmallGroup(400,70);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,48,73,79,218,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^8=1,d^2=c^4,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C523Q16 in TeX

׿
×
𝔽